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One-dimensional inviscid gas dynamics computations are made using a new method to 
solve the Boltzmann equation. The numerical method is explicit and is based on concepts 
from the kinetic theory of gases. The gas density, velocity and temperature are computed by 
integrating numerically the molecular velocity distribution function. This in turn is computed 
from the Boltzmann equation using an operator splitting approach. The basic algorithm is 
shown to be efficient and unconditionally stable. The method is tested for a single component 
diatomic ideal gas on initial-boundary value problems. These include the Riemann shock-tube 
problem and shock wave reflection from a stationary wall for a range of incident Mach 
numbers up to M = 10. The results show that the method can offer significant advantages over 
standard finite difference methods for certain problems. Shock waves are resolved well with 
minimal oscillations in the solution, and accurate results are obtained with Courant numbers 
an order of magnitude larger than the usual stability limit. The method performs best in 
regions of the flow which are close to thermodynamic equilibrium and is first order accurate 
in regions which are far from equilibrium, as would be predicted from kinetic theory 
arguments. 

Recently several numerical methods have been proposed which use Boltzmann-like 
equations as the starting point for the computation of inviscid compressible gas 
dynamics. A velocity distribution function is chosen as the dependent variable and 
the flow variables (gas temperature, density and velocity) are computed from 
moments of the distribution function over molecular velocity space. 

Kaniel and Falcovitz 121 proposed a transport model for isentropic gas dynamics. 
In their work an auxiliary thermodynamic distribution function was defined and this 
was used to yield the macroscopic flow variables via moment relations. This 
distribution function could be integrated analytically in certain special cases, but its 
second order moment differs from that of the true molecular velocity distribution 
function whose evolution is governed by the Boltzmann equation. Pullin [ 1 ] 
investigated both deterministic and Monte Carlo methods for the solution of gas 
dynamics problems using the Boltzmann equation. With the Monte Carlo method the 
velocity distribution function also included the contributions made by an ensemble of 
individual discrete particles. Their initial distribution corresponded to a Maxwellian 
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distribution and they were tracked during the computation. In his deterministic 
method the solution variables were found from analyticaiiy computed fluxes from one 
cell to the next, using the Maxwellian distribution function in the solution algorithm. 

In this paper we formulate and apply a method which parai!els the kinetic theory 
of gases more closely. The Boltzmann equation is solved deterministically using an 
operator splitting technique which is valid in the thermodynamic equilibrium limit: 
and the Maxwellian equilibrium velocity distribution function is also used in the 
solution algorithm. A feature of the present method is to allow the possibility of long 
range communication between computational cells and no numerical differentiation is 
required. The method is explicit and is shown to be efficient and unconditionalij 
stable. 

We consider one-dimensional flows of a single component diatomic ideal gas dnd 
neglect body forces. In this case the usual equations of inviscid gas dynamics may be 
written as j3 ) 

I> 

$p4)+&mf2 +P)=O. 

-$JE)+~[u@EfP);=o? 
, 

where p is the gas density, u is the gas velocity, P is the pressure and E is the total 
energy per unit mass, i.e., 

Here e, is the molecular internal energy and c,.T is the molecular translation kinetic 
energy per unit mass. Equations (l), (2) and (3) are supplemented by the equation of 
state 

P=pRT, (5) 

where R is the gas constant and T is the temperature. 
The Bohzmann equation, as applied in the kinetic theory of gases, is (3 1 

f(x, c, f) is the probability density of molecular velocities in the phase space ranges 
dc about c and dx about x at time r. @/&),,,, is the contribution to the evolution of 
the velocity distribution function due to molecular collisions. 
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The thermodynamic equilibrium solution to the Boltzmann equation is obtained in 
the limit 

a- 
St ) = 0. COll 

This states that, locally, each depleting molecular collision is balanced by a 
corresponding replenishing collision. In this case the inviscid thermodynamic 
equilibrium solution is the one-dimensional Maxwellian distribution 

fdx, C, q =fo@, 4 T; 4 = (7) 

The conservation laws, Eqs. (l), (2) and (3) can be derived from Eq. (6) with the 
definitions 

p = ja, fdc, 
d--oc 

(8) 

(9) 

pE=JTrn (f + ei)fdC 

(10) 

and 

dc = 0 

The last equation expresses overall conservation of mass, momentum and energy. 
Notice that, for one-dimensional gas motion, the translational kinetic energy in Eq. 
(4), c, T, is R T/2; the contributions due to remaining translational degrees of freedom 
(not considered in a one-dimensional model) are absorbed into the molecular internal 
energy, ei . 

NUMERICAL METHOD 

The solution variables p(x, t), U(X, 1) and T(x, t) were computed explicitly from 
solutions of the Boltzmann equation (6), and from the moment equations (8), (9) and 
(IO). PT. u/” and q are the corresponding numerical approximations to the continuous 
variables and they were defined for simplicity on an equally spaced mesh at grid 
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points .xj = jAx at time t = ndt, where j = I,..., IV; Ax is the mesh spacing, At is the 
numerical time step and N is the number of grid points in the physical space. 

The molecular velocity distribution function f(x, c: t) was approximated by the 
function fy,, =f(jAx, IAc,, tit), where l= -L ,..., 0 ,..., L; 2L + i is the number of 
lattice points in the molecular velocity space and Acj is the moiecular velocity grid 
spacing at the points x, (i.e., an equally spaced net at each xj). 

The Boftzmann equation was solved using operator splitting. Equation (6) was 
approximated by the pair of equations 

and 

(!2) 

Equation (1 1) is the statement of thermodynamic equi!ibrium and its solution is 

.f(xj 3 Cl 9 tit) =fo(p;, Uj”, q; Cl), (13) 

where f, was defined in Eq. (7). Equation (12) represents collisionless molecuiar 
transport in the phase space and it defines a mean free path for each molecuiar 
velocity. Its solution is 

f (Xj, ~1, (n + 1) At) =f(X, - C,At, c,, ndt). (14) 

This is the exact (discretized) solution to Eq. (12) and no interpolation is required if 
the velocity grid spacing is chosen such that 

ACj = AC = AXlAt. (15) 

Notice however that for At -+ 0, Ax must be decreased correspondingly for AC i3 
remain bounded. In some studies AC was chosen independently of Ax and At and the 
solution variables at the points xj - c,Al in Eq. (14) were obtained by second order 
accurate interpolation. 

The distribution function does not need to be stored during the computations. 
Equations (13) and (14) can be combined with Eqs. (8), (9) and (1Oj to give the 
algorithm 

(16) 
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where 

fFT1 =fo@"(Xj - C/At), U"(Xj - C/At), F(Xj - C,At); Cl) (17) 

and 

e,* = 2R T”(xj - c,At). (18) 

Equation (18) states that molecules transport their internal energy during the shift in 
phase space which is governed by Eq. (12). 

Unconditional linear stability can be shown using a von Neumann stability 
analysis of the method for the case where the mesh is defined with Eq. (15). In the 
analysis Eq. (17) is linearized about the constant state P; zi, r with p” = j7 + p for 
example. Writing the Fourier decomposition of the fluctuating part of the solition 
variables as p” = U;,,eie, y” = v;l,,e’o and r = u;f3)eie, where 0 =jkXAx, and 
replacing the &mmations in Eqs. (16) by integrations, gives 

(19) 

where the amplification matrix is given in Appendix A. The eigenvalues of the matrix 
are of the form 

A”’ = e- lk3mm2, t li?k&lfJ (0 
e 9 

where the Q’” are functions of RT and k,At and are independent of ri. To second 
order 

Q”’ = 1, 1 f ik,Ata - aZk;(At2/2), 

where a is the sound speed (7RT/5) 1/2 The analysis in Appendix A shows that . 
11”‘3;“‘( ,< 1. 

The boundary conditions were computed as follows: For boundaries at the points 
x1 and x,~, f ;.T I was given by Eq. (17) for x, Q x., - c,At < x, and by 

f;.:’ =.fxP;, u:, c; c,), (204 

where m = 1 for x,-cclAt <x1, and m = N for xi - c,At > x,“. Equation (20a) 
specifies Neumann boundary conditions since it implies zero gradients in the solution 
variables outside of the computational domain. For the shock reflection studies to be 
presented in the next section Eq. (20a) was applied with u: specified equal to zero at 
the wall, i.e., for m = N. A specular reflection boundary condition was also explored 
for comparison. Here the boundary condition was instead 

f;,:’ =fo@“(Xj- (~,\At),-u”(Xj- (c//At), I”(X/- Ic,lAt); c,) Pb) 

for xi - c,At > x,. Finally, for a moving internal boundary situated between xB and 
X Lft1, transport of mass across the boundary was prevented by applying Eq. (20a) at 
the point x, (with m = B) for x, - c/At > xB and similarly at xBt , (with m = B + 1) 
for xj-c,At <x,,+,. 
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DISCUSSION OF RESULTS 

The method in Eqs. (16) was applied to two different initial-boundary value 
problems and the results are shown in Tables I to IV and in Figs. 1 to 5. The figures 
show computed non-dimensional density, temperature, velocity and pressure profiles 
in the physical domain 0 ,< x < 1. The solid lines show the exact solution. The 
physical mesh spacing was Ax = 0.01 and the non-dimensional gas constant was 
chosen as R = 2.667 x low3 in all cases. 

Figures i and 2 show computational results of the Riemann shock-tube test 
problem which was studied in detail in Sod \4]. In this problem a diaphragm 
separates two regions, each in a constant state at I = 0, with p = 1, T = 375, u = 0 for 
0 < x’ < 0.5 and p = 0.125, T = 300, u = 0 for 0.5 < x < 1. The figures show details 
of the flow field 32 cycles after the diaphragm is removed. 

The molecular velocity grid spacing was chosen independentiy of Ax and A! (cf. 
Eq. (15)) with 

Aci = (1.75RT;)“*. (21) 

The time step df was 0.005 and 2L + 1, the number of grid points in moiecular 
velocity space, was 11. The CDC 6600 execution time per step was about 0.20 sec. 
This compares favorably with the 0.22 to 0.36 sec. of the finite difference methods 
which are compared in Sod 141. 

The results in Figs. 1 and 2 correspond to a maximum Courant number 
(iu I + a) At/Ax Y 1.1. The shock wave at x = 0.78 is seen to be iocated accurateiy 
and the wave is resolved within two to three zones. There is a slight undershoot at its 
downstream side. In Fig. 1 the contact discontinuity at x 2 0.65 has been smeared 
and it contains 8-10 grid points. The pressure is almost constant actross the conract 

TABLE1 

Wall end Post-shock Pressure, Density and Temperature for Reflected A4 = 2 Shock Waves w:th 41 and 
1 I Grid Points in Molecular Velocity Space 

Exact 

AC, = ( 1.75RTj)“i., 
AC = 0.85. 2L + 1 = 41 21.+ 1= 11 

.- --_.__ ~-.-__-__ -____ --.. -- . 
Ai=O.O118” Af = 0.002Y At = 03O25 

-.- --_-_ _____--_--. 

Wall Post-shock Wall Post-shock Wall Post-shock 

P 1.0356 1.0361 1.0296 1.0357 1.0359 I .040 1 1.0401 

P 0.1290 0.1318 0.1283 0.1308 0.1286 0.1332 0. i 301 

T 3020. I 2948.4 3008.6 2969.2 3020.6 2928.3 2997.G 

” Figure 3. 
’ Figure 4. 
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TABLE II 

Wail and Post-shock Pressure, Density and Temperature at I = 0.32 for Reflected M = 6 Shock Waves 
with B.C.‘s Eqs. (20a and b)” 

Exact 

Neumann B.C. 
Eq. (20a) 

Wall Post-shock 

Specular reflec. 
B.C. Eq. (20b) 

- .-._ 
Wall Post-shock 

P 2.1671 2.1661 2.1721 2.1661 2.1720 

P 0.1888 0.1992 0.1889 0.1927 0.1888 

T 4307.7 4078.0 4312.2 4215.5 4312.5 

TABLE III 

Wall and Post-shock Pressure, Density and Temperature at f = 0.32 for Reflected M = 10 Shock Waves 
with B.C.‘s Eqs. (20a and b)” 

---- 

Neumann B.C. 
Eq. (20a) 

Exact Wall 

Specular reflec. 
B.C. Eq. (20b) 

___- _____--_-. 

Post-shock Wnll Post-shock 

P 2.3611 2.3614 2.3610 2.3620 2.3613 

P 0.1958 0.204'9 0.1958 0.1950 0.1959 

T 4521.8 4215.5 4521.1 4543.3 4520.3 

"Ac=O.85, 2L + 1=41,At=0.005. 

TABLE IV 

Wall and Post-shock Pressure, Density and Temperature at t = 0.376 for Reflected M = IO Shock Wave 
with Chapman-Enskog Correction’ 

a=0 a=O.6x10-' a=2.4x IO-’ 
___-----.- - - --. - 

Exact Wall Post-shock Wall Post-shock Wall Post-shock 

P 2.361 I 2.3643 2.3421 2.3589 2.3365 2.3437 2.3224 

P 0.1958 0.2054 0. I954 0.2017 0.1937 0.2137 0.1898 

T 4521.8 4316.9 4495.4 4386.1 4523.8 4112.5 4588.3 

OB.C.Eq.(20a)$ Ac=0.85.2L+I=41,At=0.0118. 
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F::G. 1. 
Riemann 
solution. 

Computed profiies of pressure (0). density (C), velocity (A) and temperature (X$-or 
shock-tube problem at f = 0.16. Al = 0.005. 2L T 1 = il. nc -= (1.75RTj’*. (---\, Ejtact 

but there is a slight bulge in the velocity profile in this region. The end points of the 
rarefaction wave have been rounded. 

A comparison with the results of the methods tested in Sod [4/ shows that the 
resolution of the shock wave in Figs. 1 and 2 is better than that of the second order 
accurate Lax Wendroff and MacCormack methods which had four to six zones and 
noticeable oscillatory overshoots. In the region of the contact discontinuity, the 
results in Fig. 1 are comparable to those of the first order accurate Godunov scheme 
which had seven to eight zones in the contact but had five to six zones in the shcxk. 

500 

450 

4G0 

T 

350 

250 
0 0.2 0.4 x 0.6 0.8 1.0 

FIG. 2. Computed profiles of pressure (0). density (Z), velocity (A) and temperature (Xj for 
Riemann shock-tube problem at t = 0.16 treating contact discontinuity as a moving internal boundary. 
Al = 0.005, 2L + 1 =. 11, AC = (1.75RT)“‘. (-) Exact solu;ion. 
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2500 T 

2250 

2000 
0 0.2 0.4 x 0.6 0.8 1.0 

FIG. 3. Computed profiles of pressure (0), density (III), velocity (A) and temperature (X), at 
’ c=O.376 for M= 2 incident shock wave reflected from wall at x= 1. 31 =0.0118, 2L + I =41, 
AC = 0.85. (-) Exact solution. 

The resolution of the contact discontinuity is improved in the results which are 
shown in Fig. 2. Here the contact was treated as a moving internal boundary using a 
capturing and tracking approach. The contact was captured at the point in the flow 
field where the conditions: ~S~/C?A-] is a local maximum and !#/a~! and !&/8x] are 
less than E (=1.5), were satisfied. It was tracked by moving the boundary in steps 
such that A-;+’ = xl: + u;At. Figure 2 shows that the contact discontinuity is 
represented well with this approach. There are, however, small jumps in the pressure 
and the velocity across the contact whose magnitude was found to be influenced by 

2 
6 0.75 2750 

3" \ 
k.2 m 0.50 2500 T 
cd 

T 
n' 025 2250 

0 2000 
0 0.2 0.4 

X 
0.6 0.8 1.0 

FIG. 4. Computed protiles of pressure (0), density (Cl), velocity (A) and temperature (Xx) at r = 0.32 
for M = 2 incident shock wave reflected from wall at x = 1. B.C. Eq. (2Oa), At = 0.0025, 22, + 1 = 41, 
AC = 0.85. (---) Exact solution. 
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2 0.75 4250 

2 
$; 0.50 3500 T 

T 
;J x 0.25 2750 
11 I 

0 2000 
0 0.2 0.4 0.8 !.O x 0.6 

FIG. 5. Computed profiles of pressure (0), density (0). velocity (A) and temperature (X) at t = 0.32 
fcr M = 6 incident shock wave reflected from wall at x = 1 using specuizr reflection B.C. Eq. (2%). 
A! = 0.0025, 2L + 1 .= 41. AC = 0.85. (-) Exact solution. 

the choice of t;. The rounded head and tail regions of the density and temperature 
profiies survived from the time that the contact was captured. These regions 
sharpened gradually in such a way that the solution approached a step discontinuity 
at !ater times (not shown in the figure). 

Figures 3, 4 and 5 and the data in Tables I to IV summarize computations of 
shock wave reflection from a stationary wall. In each case an incident shock was 
reflected from the wall at x = 1 and the boundary conditions were given by Eqs. (20). 
The initial data were prescribed as a step change in the solution variables at x = 0.S 
with the jump given by the exact solution for the incident shock wave. The 
computations used AC = 0.85 and 2L + 1 = 41 unless otherwise noted. The execution 
time was found to increase roughly linearly with 2L + 1. 

Figures 3 and 4 show details of the reflected shock for M = 2 incident shock waves 
using the Neumann boundary condition Eq. (20a). The shock location is seen to be 
computed accurately. For the results in Fig. 3 the timestep was such that Eq. (I:) 
was satisfied and the results correspond to a maximum Courant number of 4.37. The 
reflected wave is smeared over 16-17 zones. In Fig. 4 the timestep was chosen as 
t = 0.0025; thus interpolation was required in the solution algorithm. The maximum 
Courant number was 1.37 and the shock is now resolved within 3-4 zones. 

The smearing of the shock wave in Fig. 3 (and the contact discontinuity in Fig. I) 
can be explained by using arguments from kinetic theory. In kinetic theory the 
average distance traveled by molecules between collisions, the mean free path, is 
proportional to at*, where a is a characteristic molecular velocity (taken as the sound 
speed) and t* is a characteristic time between collisions. For small departures from 
equilibrium, the non-equilibrium diffusion coefficient is proportional to the product of 
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the characteristic molecular velocity and the relaxation length (the mean free path) 
(5, p. 3701, i.e., 

D =P,a2tB =pRTt*, (22) 
where D is a diffusion coefficient and the /I are constants of order 1. The inter- 
collision time t* is, in general, a function of the molecular collision cross-section, 
number density and molecular velocity. However, in the construction of the present 
numerical method t* is by definition equal to At. This is because the operator 
splitting in Eqs. (11) and (12) allows collisional equilibration to occur only once 
each timestep. 

Indeed a comparison of the relative thickness of the shock waves in Figs. 3 and 4 
shows agreement with Eq. (22) since the theoretical wave thickness is proportional to 
D ]3J, and the thickness differs by a factor of 4.7 for the two waves as does the 
timesteps used. This indicates that the method is first order accurate in regions which 
are far from thermodynamic equilibrium. 

The data in Table I show the computed pressure, density and temperature at the 
wall and immediately behind the reflected shock (at the point of maximum 
temperature) for the results in Figs. 3 and 4. The wall values of the flow variables 
agree with the exact solution in the theoretically uniform region behind the reflected 
shock to within 2.4 and 1.7%, respectively. The results in the third section of Table I 
show the effect on accuracy of a coarse grid in molecular velocity space. In this case 
2L + 1 = 11 and the variable velocity grid spacing (Eq. (21)) differs by a factor of 
about 4 from that used for the results in Figs. 3 and 4. The error in the computed 
temperature at the wall can be seen to be still only about 3%. 

In Table I the wall pressure is seen to be computed accurately but the density and 
temperature are over- and underestimated, respectively. This differs from the trend 
reported by Srinivas et al. [6] for first order finite difference methods which 
underestimated the density and overestimated the temperature, but by roughly errors 
of the same magnitude. The data presented in Tables II and III show that the wall 
error is influenced by the choice of boundary condition (B.C.) in the present method. 
In Table II results are given for M = 6 incident shock waves (At = 0.0025, maximum 
Courant number 1.9). For the Neumann B.C. Eq. (20a) the error in the wall 
temperature is about 5.3% while for the specular reflection B.C. Eq. (20b) the results 
have errors of about 2.1%. 

Details of the reflected wave corresponding to the M = 6 incident shock with 
specular reflection boundary conditions are shown in Fig. 5. The shock is seen to be 
slightly thinner than that in Fig. 4 (M= 2) and is resolved within two to three points. 
Its location is computed accurately. With increases in the shock Mach number the 
wave thickness decreased even further and too few zones within the wave eventually 
resulted in negative temperatures being computed ahead of the incident shock. This 
was found to be due to the second order accurate interpolation in the solution 
algorithm; first order interpolation broadened the shock such that this was avoided. 
In the results to be presented next the problem was remedied instead by increasing At 
(and hence, the shock thickness (cf. Eq. (22))) and by adding an additional inter- 
mediate point to the temperature step initial data. 
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Tabies III and IV show results for M = 10 incident shock waves. In this problem 
the wall pressure increases by three orders of magnitude during the reflection process. 
The results in Table III (dt = 0.005, maximum Courant number 3.9) again show that 
improved accuracy is obtained with the specular reflection boundary condition Eq 
(20b). The wall temperature error is about 6.8% using Eq. (20a) and is less than 1% 
using the specular reflection condition Eq. (20b). Notice in this case that the wall 
temperature and density are now overestimated and underestimated, respectively. 
(Post-shock vaiues now correspond to point of maximum density.) The improvemenrs 
in accuracy which are seen in Tables II and III may be due to the fact that mass and 
energy are properly conserved at the wall with the use of the specular reflection 
boundary conditions, Eq. (20b). 

The results in the a = 0 columns of Table IV show the effect of an increased 
timesrep for the M = 10 incident wave. Here At = 0.0118 (i.e., no interpolation is 
required in the solution algorithm and the maximum Courant number is 9.2) and the 
boundary condition was given by Eq. (20a). The computed temperature at the wall is 
seen to agree with the exact solution to within 4.5% which is a slight improvement 
over the corresponding Neumann boundary condition case in Tabie III. The reflected 
shock in Tables III and IV were resolved within 4-5 and 16-113 zones resgec+jy, 
which is also in agreement with the prediction of Eq. (22). 

The remaining entries in Table IV show an attempt to account for non-equilibrii:n~ 
diffusional effects by using the Chapman-Enskog correction to the molecular 
distribution function (written for one-dimensional gas flows). The right hand side or 
Eq. (i 7) was multiplied by the factor 1 + wySi, where 

In kinetic theory the parameter a in Eq. (23) is a iocal relaxation time which 1s 
reiated to the viscosity and the thermal conductivity of the gas [3 j. It was regarded as 
a free parameter for the results in Table IV. 

A comparison between the results in Table IV shows that the correction improves 
the accuracy of the computed temperatures by about 1.5% for a = 0.6 x 1O-d. 
However, the reflected shock thickness was sensibly unchanged. Larger values of a 
are seen in Table IV to lead to inaccurate results for both the wail values and for the 
reflected shock jump conditions (and shock speed), and negative temperatures 
resulted for a 2 3 x 10m4. 

The fact that the correction in Eq. (23) has a modest effect on the details of the 
solution could be due to the fact that it strictly only applies for smali Knudsen 
number (ratio of molecular mean free path to a characteristic length, such as the 
shock thickness). In the present computations a representative Knudsen number is 
proportional to AtAc/Ax which is of order 1 (cf. Eq. (15)). 
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CONCLUSIONS 

The results demonstrate that the method presented here can offer significant 
advantages over standard finite difference methods for the solution of certain gas 
dynamics problems. The method is explicit and unconditionally stable and allows 
shock waves to be resolved well with minimal oscillations in the solution. The results 
show that accurate computations can be made with Courant numbers an order of 
magnitude larger than the usual stability limit. The efficiency of the method is 
competitive with that of other methods as is seen by a comparison of computer times 
for the test problem of Sod [4]. No numerical differentiation is required in the 
solution algorithm and the treatment of a variety of boundary conditions is shown to 
be relatively simple. 

Numerical diffusion arises naturally in the method; the scheme is first order 
accurate in regions which are far from thermodynamic equilibrium. This would be 
predicted from kinetic theory arguments, which also predict that the magnitude of the 
numerical diffusion exceeds that of the physical diffusion by the product of the 
timestep and the true molecular collision rate. The results show that this diffusion can 
be made sufficiently large for shocks to be resolved without recourse to other 
artificial diffusion mechanisms. 

The inherent disadvantage is that the magnitude of the numerical diffusion only 
approaches that of the physical diffusion for timesteps of the order of the true 
molecular inter-collision time. For this reason the method could be expected to be 
most useful for problems whose solution is insensitive to molecular diffusional effects. 
In this connection it is suggested that further study should include the development of 
a Chapman-Enskog-type correction which is valid for Knudsen numbers of order 1. 
The method is being applied to the study of detonation waves and is being tested for 
multidimensional inviscid gas dynamics computations. 

APPENDIX A: LINEAR STABIL~Y ANALYSIS 

The amplification matrix in Eq. (19) is given by 

G=e-’ -ik At - xFRT 1 - k;At2RF 

1 -ik,Atp 

At3R2T 
-ik,AtR + iki ~ 

2 

-k2 At’R p At3Rp At4RZT2 
x 

5P 
-+ik,AtT+ ik17 1 -fk:At2Ri=+ k:T 
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where r = k:Ar*(RT/2) + iiik,At. This results from a Fourier stability analysis of 
Eqs. (16) using the linearization 

& y + 1 =Jb + $L$ p”(x - ct) + g gyx - ct) -i- 3 T’V - 4 

in place of Eq. (17) and by neglecting higher order nonlinear terms. The eigenvaiues 
of G are 

Ati) = ,-‘Q”’ 
1 

where Q (‘I = 1 and Q’293’ are the roots of 

(1-Q)*+6(1 -Q)-8=0, 

where 

R2T2 
6 = -a’k:At* + k:At4 lo. 

For RTktAt* in the ranges [O, 4] and [ 10, 141, Q”’ and Qt3’ are complex conjugate. 
Therefore QQ(233’ = Q(2)Q(3) and inspection of the quadratic shows that Q(*)QC3) = 1. 
Hence 

For RTkzAt* outside those ranges direct computation shows that the exponential 
dominates Q’*’ and QC3) such that the inequality is always satisfied. This shows that 
the method is unconditionally stable and that short wavelength Fourier components 
are damped in the method. 

APPENDIX B: NOMENCLATURE 

a 
C 

cc 
D 

ei 

E 

i 
d 
k 
L 
M 

speed of sound 
molecular velocity space coordinate 
specific heat at constant volume 
diffusion coefficient in Eq. (22) 
molecular internal energy 
total energy per unit mass 
probability density of molecular velocities 
Maxwellian equilibrium velocity distribution 
amplification matrix 
wave number 
2L + 1 = number of grid points in molecular velocity space 
Mach number 
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N number of grid points in physical space 
P gas pressure 
R gas constant 
t time 
T temperature 
u gas velocity 
u Fourier amplitude function 
X physical space coordinate 

Greek Symbols 

AC 

At 
AX 
0 
A 
P 

Subscripts 

B 
i 
j 
1 
m 
x 

constant in Chapman-Enskog correction, Eq. (23) 
constant in diffusion coefficient, Eq. (22) 
mesh spacing in molecular velocity space 
numerical time step 
mesh spacing in physical space 
wave number jk,Ax 
eigenvalue 
gas density 

moving boundary value 
running index 1, 2, 3 
running index I,..., N 
running index -L ,..., 0 ,..., L 
boundary value 
physical space 
fluctuating part 

Superscripts 

n time level nAt = t 
- average value; complex conjugate 
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